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Steady flows of an incompressible, inviscid, and non-diffusive fluid of variable density 
in a gravitational field are first considered. By a transformation it is shown conclu- 
sively that there are infinitely many flows with the same flow pattern, provided the 
density gradients of these flows at  any section (e.g. far upstream) differ only by a 
multiplicative constant. These flows have identical local internal Froude numbers at 
all corresponding points of the flows and, hence, identical local Richardson numbers. 
They are therefore dynamically similar. Every time a solution for one stratification is 
obtained, one has in fact obtained the solutions for infinitely many stratifications. 

The creation of vorticity in steady stratified flows is then examined, and it is shown 
that this creation can be divided into two parts, one part being entirely due to the 
inertial effect and the other originating from the gravity effect of density variation. 

Finally, compressibility is considered and the results on similarity of stratified flows 
and on vorticity and circulation are extended to apply to steady flows of gases stratified 
in entropy. 

1. Similarity of steady stratified flows of an incompressible fluid 
For an incompressible and non-diffusive fluid stratified in density, the equation of 

incompressibility is 
DplDt = 0, (1) 

where, since only steady flows are considered, 

DIDt = u,a/ax,. 

In  ( I )  and (2), p is the density, xl, x2, and x3 are Cartesian co-ordinates, and ul, u2, 
and u3 are the corresponding velocity components. The summation convention is used 
in (2). The equation of continuity is, by virtue of ( l ) ,  

au,lax, = 0. (3) 

If the fluid is also assumed inviscid, the equations of motion are 

pu, aUilaxa = - appxi - gps,, (i = I ,  2,3), (4) 

where p is the pressure, g is the gravitational acceleration acting in the direction of 
decreasing x3, and Si3 is the Kronecker delta. 

Let the density be put in the form 

P = Po + Pl(% X2,%), ( 5 )  
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where po is a constant, and consider another stratified fluid with the density distri- 
bution 

(6) p = P o  + @1(% %,23)9  

where Po is another constant and the circumflexes on the x's denote the co-ordinates for 
the flow with density p^. Since two flows can be similar only if the geometry of the 
boundaries are similar, we denote the length scales of the two flows by L and 2, and 
write 

m = € 1 ~ .  (7) 

A point in the flow with length scale L is said to be corresponding to a point in the flow 
with length scale 2 if the dimensionless co-ordinates (measured in units of L or $) 
of the two points are identical. For dynamical similarity to exist, we must have 

A I P l  = r (8) 

at corresponding points of the two flows, r being a positive constant. 
The question is then posed: Can a flow have the density distribution p and be similar 

to a given flow with the density distribution p ^ Z  We shall show that the answer is in the 
affirmative. 

If the solution with distribution has velocity components at, we have 

paa aai/aija = - a7;pgi - 2gplaii3, 
where A 

7; = p+pogx3,  gi = Xi/L. 
We also have 

and 
a,ap^la~, = o 

aa,piji = 0. 

Now let (actually an arbitrary constant can be added to 7~ or 6)  

where 7~ is defined by 

Then, the first equation in (13), and (5), (6), and (8) guarantee that 

7T = +p0gx3' 

provided (1 1 )  is satisfied. Furthermore, obviously 

uaap/aya = 0. 

Equations (7), (8) and (13) allow us to write? 

Thus (9) can be written as 

t Remember that yt = gi at corresponding points, so that a/@, = a/aga. This would be even 
clearer if we had used Gi = mxi. 
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which, after division by rm, is 

pa aui/aya = - an/ayi - Lgp, si,. (19) 

This is exactly (4) with the Cartesian co-ordinates in dimensionless form. Thus, if 
(9) is satisfied by fit and 3, ui and n given by (13) satisfy (19), or (4). 

Also, because of (15) and (16), (3) is satisfied if (12) is. Hence we have proved what 
we set out to prove. The boundary conditions, if they are kinematical, are identical 
since the boundary geometries are identical, and, if they are dynamical (such as at  
density discontinuities), are also identical since dynamic boundary conditions are 
natural boundary conditions derivable from the differential equations. Hence the 
boundary conditions are satisfied by the flow (ul, p ,  p )  if they are satisfied by the flow 
(ai, p ,  6). 

If we define the local internal Froude number F at any point of the flow by 

F2 = PuaUalg IVPI L2 (20) 

(and similarly for the flow with density p̂ ), and the local Richardson number Ri at  
any point of the flow by 

Ri = g l V p J / p  ( v q l 2 ,  4' = uau,, (21) 

(and similarly for the flow with density b),  then we can say that the two flows have 
identical local internal Froude numbers a t  corresponding points (i.e. for yi = Qi),  and 
consequently the same local Richardson numbers a t  these points. The flow patterns 
are also similar, by virtue of the first equation in (13). The two flows are indeed similar 
geometrically, kinematically, and dynamically. 

But since po and r are arbitrary, we are not merely treating one flow similar to the 
flow j3; we are treating a doubly infinite family of flows, all of which are similar to the 
flow for j3, and hence to one another. This result is new, and I think it is very useful for 
laboratory simulation of natural phenomena. Note that density discontinuities are 
not ruled out. But, for similarity to exist between any two flows, they must occur 
a t  corresponding places, and, wherever they occur, their ratio must be the same 
constant (denoted by r in this paper). We note that when the density variation is small 
as compared with the mean density, the factor (p^/p)i  in (13) can be replaced by (p^o/po)i 
(and by 1 if water is used in the laboratory to model lakes or oceans), and the effect of 
density variation, important at  low Froude numbers, is embodied in the factor r and 
is entirely associated with gravity. 

In conclusion, to ensure similarity, the requirements expressed by (8) and the first 
equation in (13) must be satisfied a t  corresponding sections somewhere, say far 
upstream. Note that p does not have to be proportional to p̂  at corresponding points. 

2. Creation of vorticity in steady stratified flows of an incompressible fluid 
Let po now denote some constant reference density. We shall use the transformation 

(Yih 1958) 
u; = (p/p,)$ = ui, (22) 

and study the creation of vorticity. With the vorticity vector Ei defined by 

g = cllrlu, 6 = (51,5'2;2,53), = (211,u2,u3), (23) 
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we define the vorticity of the associated velocity u’ = (ui, ui, ui), and 

5‘ = curlu‘. (24) 

The Euler equations can be written as 

where s1 is the body-force potential, and the equation of continuity can be written as 

a u p x ,  = 0. (26) 

(27) 

From (25) and (26), by cross-differentiation, we obtain 

po(u’.v)g’ = p0(5’.V)u’-Vp x VQ. 

The first term in (27) is the substantial derivative of the vorticity vector, the second 
term gives the effects of stretching and turning on the three components of g’,  so that 
the last term represents the rate of creation of the vorticity 5’ (or the components of 
it) as a result of density variation in the presence of a gravitational field. It is always a 
horizontal vector. The true vorticity is then created in the following two ways: 

(i) by the inertial effect of the density variation, through the transformation (22); 
for instance, if gravity were absent, a steady flow originating from a large reservoir, 
where the velocity is zero, would have zero r, which means would be created - by 
inertia alone if p is not uniform. 

(ii) by the creation of 5’ by density variation in the presence of a gravitational field. 
In  general (i.e. except for the unlikely case x’ + 0 but 5 = 0) vorticity will be created. 
This creation is attributed to the action of gravity on a stratified fluid. 

Note that although the pseudo-vorticity created is always horizontal, it  does not 
necessarily remain so because of the turning of the pseudo-vorticity lines. 

Since the pseudo-vorticity is associated with the pseudo-circulation F’ defined by 

w0 can profitably consider the rate of change of I” around a closed material circuit. 
Let D/Dt stand for the substantial derivative. Then, using (25) and 

(D/Dt)  ax, = aui, 
we have 

(29) 

showing clearly that I” would be constant if gravity were not present, and that gravity 
can change the pseudo-circulation I?’ in a stratified fluid and through it change the true 
circulation I? defined by 

r = ui ax,. f 
In the absence of gravity, r’ would remain constant, but would in general change 
with time - as a result of the inertial effect of density variation. 

The creation of vorticity and circulation in a nonhomogeneous fluid is the subject of 
Bjerknes’ theorems, of course. But since these theorems apply to unst>eady flows as 
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well as steady flows, their content is necessarily less far-reaching: they say that the 
creation of vorticity or circulation arises from a term containing the factor 

p-= V P  x v p ,  

but can say no more about the constitution of p .  By restricting attention to steady 
flows, I have been able, in effect, to separate p into a dynamical part which accounts 
for the inertial effect of density variation, and a static part which accounts for the 
gravity effect of the constant part of the density. As a corollary of (30), we see that, if 
the material circuit is taken on a constant density surface, 

Dr' /Dt  = 0 and DI'/Dt = 0, 

which implies that any vorticity created lies in the constant density surface (by the 
use of Stokes' theorem). 

3. Extension to entropy stratification in gases 
The results obtained above will now be extended to steady flows of compressible 

fluids stratified in entropy. We shall consider ideal gases and denote the ratio of the 
specific heat at  constant pressure (cp)  to that a t  constant volume by the usual symbol 
y, and we shall write, with the subscript c denoting some constant reference quantity, 

which is equal to a constant times exp ( - S/c,), S being the entropy. Since the flow is 
steady and heat conduction and viscous dissipation are neglected, the entropy does 
not change along a streamline, and we have 

Again, we consider two h-distributions: 

A = A, + Al, (33) 

h = A,+&, (34) 

where the A, and 2, are assumed constant and 

r = Al/hl (35) 

at corresponding points of the two flows, r being a positive constant. And, again, the 
question is posed: Can a flow have the entropy distribution given by A and be similar 
to a given flow with the entropy distribution given by A Z The answer is again in the 
affirmative but, instead of (13)) the transformation demonstrating this is (with L, 2, 
yi,  y, and gi retaining their meanings as before and with m given by (7)) 

ui = (A/rmA)ii& 7~ = $/rm, (36) 

where 7~ and 2 are defined by 

and 

(37) 

(38) pl = p / A ,  p"' = p/A. 
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The demonstration that the flow (ui, n, A )  satisfies the equations of motion, the 
equation of continuity, and (32) is quite similar to the corresponding demonstration 
given above for incompressible fluids. It is sufficient to recall the results of Yih (1960 
or 1980, p. 6). In  particular, from (31), 

p’ /py  = pE/p; = constant, (39) 

so that the integrals in (37) exist. 
Again, given geometrical similarity, dynamical similarity is assured if at  some 

section far upstream (33), (34), and (35) hold, and the velocity distributions for the 
two flows are related according to the first equation in (36). 

As to the creation of circulation and vorticity, we note that (Yih 1960), with 

we have 

and 

Since (39) is satisfied, by cross differentiation of (42) after division by p’ we have 

(u’  . V) (g’ lp’)  = ( t ’ lp ’ ) .  VU’ - V h  x VQ, (43) 

where Q is the body-force potential gx,. Again, the last term is a horizontal vector, and 
represents the creation of pseudo-vorticity. The pseudo-vorticity, however, is not 
necessarily horizontal, because of the turning of the pseudo-vorticity lines. 

If  F’ is again defined by (28), with u; given by (40), we have, instead of (30), 

m p t  = Q ~ A ,  (44) $ 
showing that Dr’/Dt  is zero if gravity does not exist or if the material circuit along 
which F’ is taken lies on a surface of constant entropy. Equation (44) shows the effect 
of the last term in (43), as (30) shows the effect of the last term in (27). 

These are again two means of creation of true vorticity, as in the case of the in- 
compressible fluid, and we shall not repeat the nearly identical statements. 
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